指数函数加减法的运算法则,

2024-12-12 17:02:03
推荐回答(5个)
回答1:

指数没有加减法的法则
两个指数式相加减,除非具体数值,就不能化简了。
a^x+a^y,
2^x-3^x
都是最简的

回答2:

指数函数的形式为y=a^x(a>0且a≠1) (x∈R)
指数函数的乘除运算法则:
a^x*a^z=a^(x+z)
a^x/a^z=a^(x-z)

回答3:

指数好像没有加减法则

回答4:

指数函数指数函数的一般形式为y=a^x(a>0且不=1)
,要想使得x能够取整个实数集合为定义域,则只有使得
如图所示为a的不同大小影响函数图形的情况。
在函数y=a^x中可以看到:
(1)
指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑,
同时a等于0一般也不考虑。
(2)
指数函数的值域为大于0的实数集合。
(3)
函数图形都是下凹的。
(4)
a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)
可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与x轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与x轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6)
函数总是在某一个方向上无限趋向于x轴,永不相交。
(7)
函数总是通过(0,1)这点
(8)
显然指数函数无界。
(9)
指数函数既不是奇函数也不是偶函数。
(10)当两个指数函数中的a互为倒数时,此函数图像是偶函数。
例1:下列函数在r上是增函数还是减函数?说明理由.
⑴y=4^x
因为4>1,所以y=4^x在r上是增函数;
⑵y=(1/4)^x
因为0<1/4<1,所以y=(1/4)^x在r上是减函数1对数的概念
如果a(a>0,且a≠1)的b次幂等于n,即ab=n,那么数b叫做以a为底n的对数,记作:logan=b,其中a叫做对数的底数,n叫做真数.
由定义知:
①负数和零没有对数;
②a>0且a≠1,n>0;
③loga1=0,logaa=1,alogan=n,logaab=b.
特别地,以10为底的对数叫常用对数,记作log10n,简记为lgn;以无理数e(e=2.718
28…)为底的对数叫做自然对数,记作logen,简记为lnn.
2对数式与指数式的互化
式子名称abn指数式ab=n(底数)(指数)(幂值)对数式logan=b(底数)(对数)(真数)
3对数的运算性质
如果a>0,a≠1,m>0,n>0,那么
(1)loga(mn)=logam+logan.
(2)logamn=logam-logan.
(3)logamn=nlogam
(n∈r).
记忆口决
有理数的指数幂,运算法则要记住。
指数加减底不变,同底数幂相乘除。
指数相乘底不变,幂的乘方要清楚。
积商乘方原指数,换底乘方再乘除。
非零数的零次幂,常值为
1不糊涂。
负整数的指数幂,指数转正求倒数。
看到分数指数幂,想到底数必非负。
乘方指数是分子,根指数要当分母。
看到分数指数幂,想到底数必非负。
乘方指数是分子,根指数要当分母。

回答5:

e的x平方次方。和e的x的平方括号次方有什么区别?