在 t = 0 时,Uc0 = 4V。
Uc = 6 - 2* Ic
Ic = dQ/dt = C*dUc/dt
Uc = 6 -2C *dUc/dt
特解为:Uc = -2C * dUc/dt,dUc/Uc = -dt/(2C)
所以,两边同时积分,可以得到:lnUc = -t/2C,Uc = U*e[-t/(2C)]
则,dUc/dt = dU/dt*e^[-t/(2C)] + U*[-1/(2C)]*e^[-t/(2C)],代入原式,得到:
Uc = 6 -2C * dU/dt * e^[(-t/(2C)] + U*e^[-t/(2C)] = U * e^[-t/(2C)]
dU/dt = 6* [1/(2C)] * e^[t/(2C)]
dU = 6 * e^[t/(2C)] d[t/(2C)]
所以,U = 6 * e^[t/(2C)] + U0
Uc = U * e^[-t/(2C)] = 6 + U0 * e^[-t/(2C)]
因为当 t = 0 时,Uc = 6 + U0 * e^0 = 6 + U0 = 4V
所以,U0 = -2V,Uc = 6 - 2 * e^[-t/(2C)]
因此,Ic = C*{-2 * e^[-t/(2C)] * [-1/(2C)]}
= e^[-t/(2C)]