在数学活动中,小明为了求1⼀2+1⼀4+1⼀8+1⼀16+1⼀32+...+1⼀2^n的值为( )

在设计一个能求1/2+1/4+1/8+1/16+1/32+...+1/2^n的值的几何图形
2024-12-19 11:45:34
推荐回答(2个)
回答1:

等比数列求和公式Sn=a1(1-q^n)/(1-q) =(a1-an*q)/(1-q) (q≠1)

和为1-1/2的n次幂


正方形1/2划分 最后剩2个二的n次方分之一,求白色部分面积

回答2:

小明为了求1/2+1/4+1/8+1/16+1/32+...+1/2^n的值为( )

1/2+1/4+1/8+1/16+1/32+...+1/2^n
=1/2+1/4+1/8+1/16+1/32+...+1/256+1/256- 1/2^n
=1/2+1/4+1/8+1/16+1/32+...+1/128+1/128- 1/2^n
=1/2+1/4+1/8+1/16+1/32+1/64+1/64-1/2^n
=1/2+1/4+1/8+1/16+1/32+1/32........-1/2^n
=……
=1-1/2^n
=2^n分之( 2^n-1 )