重心是三角形中线的交点。
三角形ABC中BD和CE分别是中线,相交于F。
连接DE,因为DE是中位线。
三角形重心定理的性质:
1、重心到顶点的距离是重心到对边中点的距离的2倍。
2、重心和三角形3个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。
在数学上是这样来研究面积问题的:首先规定边长为1的正方形的面积为1,并将其作为不证自明的公理。然后,用这样的所谓单位正方形来度量其他平面几何图形。
较为简单的正方形和长方形的面积是很容易得到的,利用割补法可以把平行四边形的面积问题转化为长方形的面积问题,进而可以得到三角形的面积。于是,多边形的面积就可以转化为若干三角形的面积。
连EF交AD于G
∵重心为三条中线的交点
∴EFD分别为各边中点
∴EF∥BC且EF=(1/2)BC=BD
∵F为中点,FG∥BD
∴FG=(1/2)BD
同理证明GE=(1/2)DC=(1/2)BD=FG
∴G为EF中点
∴S△AFO=S△AEO(同底AO等高FG=GE)
又易正明S△AFO=S△BFO(等底AF=BF同高)
∴S△AEO=S△AFO=S△BFO=(1/3)S△ABE……(1)
设A到BE的高为h
又∵S△AEO=(1/2)OE·h……(2)
S△ABE=(1/2)BE·h……(3)
结合(1)(2)(3)
∴BE=3OE
∴BO=2OE
命题的证