任给ε>0,要使│(n^2+1)/(n^2-1)-1│<ε,即│2/(n^2-1)│<εn^2-1>2/ε,∴N=[√(1+2/ε)]所以,任给ε>0,都存在自然数N=[√(1+2/ε)],使当n>N时,│(n^2+1)/(n^2-1)-1│<ε根据极限定义,得 lim(n趋向于无穷)[(n^2+1)/(n^2-1)]=1