利用数列极限的定义证明下列极限 lim(n趋向于无穷)n^2+1⼀n^2-1=1

2024-11-24 11:40:30
推荐回答(1个)
回答1:

任给ε>0,要使│(n^2+1)/(n^2-1)-1│<ε,即
│2/(n^2-1)│<ε
n^2-1>2/ε,∴N=[√(1+2/ε)]
所以,任给ε>0,都存在自然数N=[√(1+2/ε)],使当n>N时,│(n^2+1)/(n^2-1)-1│<ε
根据极限定义,得 lim(n趋向于无穷)[(n^2+1)/(n^2-1)]=1