解
(x+y)²=3
即x²+2xy+y²=3 ①
(x-y)²=1
即x²-2xy+y²=1 ②
两式相加
2x²+2y²=4
∴x²+y²=2
两式相减
4xy=2
∴xy=1/2
(x+y)²=x²+2xy+y², (x-y)²=x²-2xy+y²
所以有:
x²+y²=(x+y)²+(x-y)²
=3+1
=4
xy=[(x+y)²-(x-y)²]/4
=(3-1)/4
=1/2
(x+y)^2 (x-y)^2
=x^2+2xy+y^2=3 ① =x^2-2xy+y^2=1 ②
①-②
4xy=2
xy=1/2
①+②
2x^2+2y^2=4
x^2+y^2=2
如果不懂可以追问,谢谢