设正整数数列{an}前n项和为Sn,且满足Sn=1⼀8(an+2)∧2,求证该数列为等差数列

2025-02-01 17:52:16
推荐回答(1个)
回答1:

(1)Sn=1/8(an+2)^2,S(n-1)=1/8[a(n-1)+2]^2,

an=Sn-S(n-1)=1/8[an^2+4an-a(n-1)^2-4a(n-1)]

8an=an^2+4an-a(n-1)^2-4a(n-1)

an^2-a(n-1)^2-4an-4a(n-1)=0

[an+a(n-1)][an-a(n-1)]-4[an+a(n-1)]=0

[an+a(n-1)][an-a(n-1)-4]=0

因为{an}为正整数数列,an+a(n-1)>0

所以an-a(n-1)-4=0,即an-a(n-1)=4

所以{an}是等差数列

(2).a1=S1=1/8(a1+2)^2

解方程得:a1=2

根据等差数列求和公式:

数列{an}中,San=na1+n(n-1)d/2=2n+2n(n-1)=2n^2

数列{bn}中,bn=1/2an-30

Sbn=1/2San-30n

带入San=2n^2

Sbn=n^2-30n=(n-15)^2-225

当n=15时,数列{bn}的前n项和最小,为-225.