Sn=1+1/n^2+1/(n+1)^2=(n^4+2n^3+3n^2+2n+1)/(n^2*(n+1)^2)=(n*(n+1)+1)^2/(n^2*(n+1)^2)
故√Sn=√(n*(n+1)+1)^2/(n^2*(n+1)^2)=[n(n+1)+1]/[n(n+1)]=1+1/[n(n+1)]=1+1/n-1/(n+1)
所以:
√S1=1+1-1/2
√S2=1+1/2-1/3
√S3=1+1/3-1/4
....
√Sn=1+1/n-1/(n+1)
s=n+1-1/(n+1)
解:依题意得:把sn开根号得根号sn=(n(n+1)+1)/(n(n+1))=1+1/(n(n+1))
n=1 s=3/2
n=2 s=3/2+7/6
……
s=3/2+7/6+13/12+……+(n(n+1)+1)/(n(n+1))=n+(1/2+1/6+……1/(n(n+1)))=n+(1-1/2)+(1/2-1/3)+……(1/n-1/(n+1))=n+1-1/(n+1)
我靠、、1+1=2 1+2=3 1+3=4 n+1=1+n 这么简单、直接求啊、、实在不行、、再说吧