解答如下图:
letx=2sinudx=2cosu dux=0, u=0x=2, u=π/2∫(-2->2) [ x^3.cos(x/2) +1/2].√(4-x^2) dx=(1/2)∫(-2->2) √(4-x^2) dx=∫(0->2) √(4-x^2) dx=4∫(0->π/2) (cosu)^2 du=2∫(0->π/2) (1+cos2u) du=2[ u +(1/2)sin2u]|(0->π/2)=π=3.141592654前8位=31415926