解:∵x²-x-1=0
∴x=﹙1±√5﹚/2
x³-2x-1
=x³-2x²-x+2x²-x-1
=x﹙x²-2x-1﹚+2x²-x-1
=2x²-x-1
=2﹙x+1﹚-x-1
=x+1
=﹙3±√5﹚/2.
=
x²-x-1=0
x²=x+1
所以
x³-2x-1
=x(x+1)-2x-1
=x²+x-2x-1
=x²-x-1
=0
x³-2x - 1
= x³ - x² + x²-2x - 1
= x(x² - x - 1) + (x² - x - 1)
= 0