二次函数中b的符号是如何确定的?

a与c的值又是如何确定的?
2024-11-27 09:57:26
推荐回答(5个)
回答1:

b 的确定与对称轴有关,在y轴左则与a符号相同,y轴右与a符号相反。a看开口方向,上为正。c看与一轴焦点在(0,0)上还是下,上为正。

二次函数表达式为y=ax²+bx+c(且a≠0),它的定义是一个二次多项式(或单项式)。

如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。

扩展资料:

一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧。(可巧记为:左同右异)

常数项c决定抛物线与y轴交点。抛物线与y轴交于(0, c)

具体可分为下面几种情况:

当h>0时,y=a(x-h)²的图像可由抛物线y=ax²向右平行移动h个单位得到;

当h<0时,y=a(x-h)²的图像可由抛物线y=ax²向左平行移动|h|个单位得到;

当h>0,k>0时,将抛物线y=ax²向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)²+k的图象;

当h>0,k<0时,将抛物线y=ax²向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象;

当h<0,k>0时,将抛物线y=ax²向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)²+k的图象;

当h<0,k<0时,将抛物线y=ax²向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象。

参考资料来源:百度百科——二次函数

回答2:

b 的确定与对称轴有关,在y轴左则与a符号相同,y轴右与a符号相反。a看开口方向,上为正。c看与一轴焦点在(0,0)上还是下,上为正。

看函数图像与y轴的交点,如果位于正半轴则b>0,如果位于负半轴则b<0

扩展资料:

表达式

顶点式

y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k) [4]  ,对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,当x=h时,y最大(小)值=k.有时题目会指出让你用配方法把一般式化成顶点式。

例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。

解:设y=a(x-1)²+2,把(3,10)代入上式,解得y=2(x-1)²+2。

注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。 [2] 

具体可分为下面几种情况:

当h>0时,y=a(x-h)²的图像可由抛物线y=ax²向右平行移动h个单位得到;

当h<0时,y=a(x-h)²的图像可由抛物线y=ax²向左平行移动|h|个单位得到;

当h>0,k>0时,将抛物线y=ax²向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)²+k的图象;

当h>0,k<0时,将抛物线y=ax²向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象;

当h<0,k>0时,将抛物线y=ax²向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)²+k的图象;

当h<0,k<0时,将抛物线y=ax²向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象。

回答3:

b 的确定与对称轴有关,在y轴左则与a符号相同,y轴右与a符号相反。a看开口方向,上为正。c看与一轴焦点在(0,0)上还是下,上为正。

二次函数表达式为y=ax²+bx+c(且a≠0),它的定义是一个二次多项式(或单项式)。

如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。

扩展资料:

二次函数y=ax²,y=a(x-h)²,y=a(x-h)²+k,y=ax²+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下:

y=ax² (0,0) x=0

y=ax²+K (0,K) x=0

y=a(x-h)² (h,0) x=h

y=a(x-h)²+k (h,k) x=h

当h>0时,y=a(x-h)^2的图象可由抛物线y=ax²向右平行移动h个单位得到。

当h<0时,则向左平行移动|h|个单位得到。

当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)²+k(h>0,k>0)的图象。

当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位,就可得到y=a(x-h)²+k(h>0,k<0)的图象。

当h<0,k>0时,将抛物线y=ax^2向左平行移动|h|个单位,再向上移动k个单位,就可得到y=a(x+h)²+k(h<0,k>0)的图象。

当h<0,k<0时,将抛物线y=ax^2向左平行移动|h|个单位,再向下移动|k|个单位,就可得到y=a(x+h)²+k(h<0,k<0)的图象。

在向上或向下。向左或向右平移抛物线时,可以简记为“上加下减,左加右减”。

回答4:

b 的确定与对称轴有关,在y轴左则与a符号相同,y轴右与a符号相反。a看开口方向,上为正。c看与一轴焦点在(0,0)上还是下,上为正。

a、b共同影响对称轴:

对称轴x=-b/2a;a、b的值决定了对称轴,也决定了对称轴的位置,当a、b同号时,对称轴在y轴左边,当a、b异号时,对称轴在y轴右边。这个性质可简记为“同左异右”,也可记为“左同右异”。

扩展资料

二次函数y=ax2+bx+c中含字母代数式的符号的确定

1、单个字母a、b、c符号的确定

a的符号由抛物线开口方向确定;b的符号由a的符号和对称轴的符号共同确定;c的符号根据抛物线与y轴交点的纵坐标的符号确定。

2、b2-4ac的符号根据抛物线与x轴交点的个数确定。

3、只含有字母a、b的代数式符号通常根据对称轴的符号确定。

4、形如a+b+c、9a-3b+c、a-2b+4c,…这种类型代数式符号,通常根据x取某个值时函数y值的符号进行判定。如9a-3b+c就是x=-3时y的值。

5、形如3a+c、2b-c,这种只含有字母a、c或b、c的代数式的符号,通常是寻找与第4条中类似的代数式的符号,再根据对称轴中a与b的关系,用含a的代数式替换b,或者用含b的代数式替换a。

回答5:

a看开口方向,上为正。c看与一轴焦点在(0,0)上还是下,上为正。b 的确定与对称轴有关,在y轴左则与a符号相同,y轴右与a符号相反