已知等差数列{a n }的公差为d,前n项和为S n ,等比数列{b n }的前n项和为T n ,且{a n }、{b n }满足条

2024-12-19 14:33:17
推荐回答(1个)
回答1:

(I)设等比数列{b n }的公比为q,由S 4 =4a 3 -2,得 4 a 1 +
4×3
2
×d=4( a 1 +2d)-2
,化为6d=8d-2,解得d=1.即公差d=1.
(II)由S n ≥S 5 成立,得到 n a 1 +
n(n-1)
2
×1≥5 a 1 +
5×4
2
×1
,化为(n-5)(2a 1 +n+4)≥0.
由于对任意的n∈N * ,都有S n ≥S 5 成立,∴
n≥5
2 a 1 +n+4≥0
1≤n<5
2 a 1 +n+4≤0

解得 -
9
2
a 1 ≤-4

a 1 ∈[-
9
2
,-4]

(III)①当a 1 =-4时,a n =-4+(n-1)×1=n-5;
②当n=1时,b 1 =T 1 =2b 1 -2,解得b 1 =2;
当n≥2时,b n =T n -T n-1 =2b n -2-(2b n-1 -2)=2b n -2b n-1 ,化为b n =2b n-1
∴数列{b n }是以2为首项,2为公比的等比数列,∴ b n =2× 2 n-1 = 2 n
c n =(n-5)? 2 n
V n =-4× 2 1 -3× 2 2 -2× 2 3 - 2 4 +0+2 6 +2×2 7 +…+(n-5)?2 n
2 V n =-4× 2 2 -3× 2 3 -2× 2 4 -2 5 +2 7 +2 8 +…+(n-6)?2 n +(n-5)?2 n+1
两式相减得-V n =-8+2 2 +2 3 +…+2 n +(5-n)?2 n+1 = -10+
2×( 2 n -1)
2-1
+(5-n)? 2 n+1

化为 V n =12+(n-6)? 2 n+1