(I)设等比数列{b n }的公比为q,由S 4 =4a 3 -2,得 4 a 1 +
(II)由S n ≥S 5 成立,得到 n a 1 +
由于对任意的n∈N * ,都有S n ≥S 5 成立,∴
解得 -
∴ a 1 ∈[-
(III)①当a 1 =-4时,a n =-4+(n-1)×1=n-5; ②当n=1时,b 1 =T 1 =2b 1 -2,解得b 1 =2; 当n≥2时,b n =T n -T n-1 =2b n -2-(2b n-1 -2)=2b n -2b n-1 ,化为b n =2b n-1 . ∴数列{b n }是以2为首项,2为公比的等比数列,∴ b n =2× 2 n-1 = 2 n . ∴ c n =(n-5)? 2 n . ∴ V n =-4× 2 1 -3× 2 2 -2× 2 3 - 2 4 +0+2 6 +2×2 7 +…+(n-5)?2 n , 2 V n =-4× 2 2 -3× 2 3 -2× 2 4 -2 5 +2 7 +2 8 +…+(n-6)?2 n +(n-5)?2 n+1 . 两式相减得-V n =-8+2 2 +2 3 +…+2 n +(5-n)?2 n+1 = -10+
化为 V n =12+(n-6)? 2 n+1 . |