谁启动了20亿年前的核反应堆?

2024-12-12 02:01:39
推荐回答(3个)
回答1:

奥克洛核反应堆

由美国籍意大利著名物理学家恩利克·费米领导的小组于1942年12月(曼哈顿计划期间)在世界顶级学府 芝加哥大学建成。

核反应堆,又称为原子能反应堆或反应堆,是能维持可控自持链式核裂变反应,以实现核能利用的装置。核反应堆通过合理布置核燃料,使得在无需补加中子源的条件下能在其中发生自持链式核裂变过程。严格来说,反应堆这一术语应覆盖裂变堆、 聚变堆、裂变聚变混合堆,但一般情况下仅指裂变堆。 人类第一台核反应堆由美国籍意大利著名物理学家恩利克·费米领导的小组于1942年12月(曼哈顿计划期间)在世界顶级学府 芝加哥大学建成,命名为 芝加哥一号堆(Chicago Pile-1)[1]。该反应堆是采用铀裂变链式反应,开启了人类原子能时代, 芝加哥大学也因此成为人类“原子能诞生

核反应堆

核反应堆是核电站的心脏,它的工作原理是这样的:

原子由 原子核与核外电子组成。原子核由 质子与 中子组成。当铀235的原子核受到外来中子轰击时,一个原子核会吸收一个中子分裂成两个质量较小的原子核,同时放出2—3个中子。这裂变产生的中子又去轰击另外的铀235原子核,引起新的 裂变。如此持续进行就是裂变的 链式反应。链式反应产生大量热能。用循环水(或其他物质)带走热量才能避免反应堆因过热烧毁。导出的热量可以使水变成水蒸气,推动汽轮机发电。由此可知,核反应堆最基本的组成是裂变原子核+载热体。但是只有这两项是不能工作的。因为,高速中子会大量飞散,这就需要使中子慢化增加与原子核碰撞的机会;核反应堆要依人的意愿决定工作状态,这就要有控制设施;铀及裂变产物都有强放射性,会对人造成伤害,因此必须有可靠的防护措施;核反应堆发生事故时,要防止各种事故工况下辐射泄漏,所以反应堆还需要各种安全系统。综上所述,核反应堆的合理结构应该是:核燃料+慢化剂+载热体+控制设施+防护装置+安全设施。

还需要说明的是,铀矿石不能直接做核燃料。 铀矿石要经过精选、碾碎、酸浸、浓缩等程序,制成有一定铀含量、一定几何形状的铀棒或者球状燃料才能参与反应堆工作。

类型

核反应堆

核反应堆

根据用途,核反应堆可以分为以下几种类型

①将 中子束用于实验或利用中子束的核反应,包括研究堆、材料实验等。

②生产放射性同位素的核反应堆。

③生产核裂变物质的核反应堆,称为生产堆。

④提供 取暖、 海水淡化、 化工等用的热量的核反应堆,比如多目的堆。

⑤为发电而发生热量的核反应,称为发电堆。

⑥用于推进船舶、飞机、火箭等到的核反应堆,称为动力堆。

另外,核反应堆根据燃料类型分为 天然铀堆、浓缩铀堆、 钍堆;根据中子能量分为快中子堆和热中子堆;根据冷却剂(载热剂)材料分为水冷堆、气冷堆、有机液冷堆、液态金属冷堆;根据慢化剂分 为石墨堆、 水冷堆、有机堆、熔盐堆、钠冷堆;根据中子通量分为高通量堆和一般能量堆;根据热工状态分为沸腾堆、非沸腾堆、压水堆;根据运行方式分为脉冲堆和稳态堆,等等。核反应堆概念上可有900多种设计,但现实上非常有限。

按照历史年代分类

前苏联于1954年建成了世界上第一座原子能发电站,掀开了人类和

核反应堆

核反应堆

平利用原子能的新的一页。英国和美国分别于1956年和1959年建成原子能发电站。到2004.9.28,在世界上31个国家和地区,有439座发电用原子能反应堆在运行,总容量为364.6百万千瓦,约占世界发电总容量的16%。其中,法国建成59座发电用原子能反应堆,原子能发电量占其整个发电量的78%;日本建成54座,原子能发电量占其整个发电量的25%;美国建成104座,原子能发电量占其整个发电量的20%;俄罗斯建成29座,原子能发电量占其整个发电量的15%。我国于1991年建成第一座原子能发电站,包括这一座在内,当前投入运行的有9座发电用原子能反应堆,总容量为660万千瓦。我国另有2座反应堆在建设中。我国还为 巴基斯坦建成一座原子能发电站。

第一代(GEN-I)核电站是早期的原型堆电站,即1950年至1960年前期开发的轻水堆(light water reactors,LWR)核电站,如美国的希平港(Shippingport)压水堆(pressurized-water reactor,PWR)、 德累斯顿(Dresden)沸水堆(boiling water reactor,BWR)以及英国的镁诺克斯(Magnox)石墨气冷堆等。

第二代(GEN-Ⅱ)核电站是1960年后期到1990年前期在第一代核电站基础上开发建设的大型商用核电站,如LWR(PWR,BWR)、加拿大坎度堆(CANDU)、苏联的压水堆VVER/RBMK等。到1998年为止,世界上的大多数核电站都属于第二代核电站。

第三代(GEN-Ⅲ)是指满足更高的安全性指标的先进核电站,要求安全性指标达到URD的要求。第三代核电站采用标准化、最佳化设计和安全性更高的非能动安全系统,如先进的沸水堆(advanced boiling water reactors,ABWR)、系统80+、AP600、欧洲压水堆(European pressurized reactor,EPR)等。

第四代(GEN-Ⅳ)是待开发的安全性更高的核电站,其目标是到2030年达到实用化的程度,主要特征是经济性高(与天燃气火力发电站相当)、安全性好、废物产生量小,并能防止核扩散。

2002年9月19日至20日在东京召开的GIF(第四代核能系统国际论坛Generation IV International Forum,GIF)会议上,与会的10个国家在94个概念堆的基础上,一致同意开发以下六种第四代核电站概念堆系统。

按照冷却方式分类

气冷快堆

气冷快堆(gas-cooled fast reactor,GFR)系统是快中子谱氦冷反应堆,采用闭式燃料循环,燃料可选择复合陶瓷燃料。它采用直接循环氦气轮机发电,或采用其工艺热进行氢的热化学生产。通过综合利用快中子谱与锕系元素的完全再循环,GFR能将长寿命放射性废物的产生量降到最低。此外,其快中子谱还能利用现有的裂变材料和可转换材料(包括贫铀)。参考反应堆是288兆瓦的氦冷系统,出口温度为850℃。

液态金属冷却快堆

铅合金液态金属冷却快堆(lead-cooled fast reactor,LFR)系统是快中子谱铅(铅/铋共晶)液态金属冷却堆,采用闭式燃料循环,以实现可转换铀的有效转化,并控制锕系元素。燃料是含有可转换铀和超铀元素的金属或氮化物。

LFR系统的特点是可在一系列 电厂额定功率中进行选择,例如LFR系统可以是一个1200兆瓦的大型整体电厂,也可以选择额定功率在300~400兆瓦的模块系统与一个换料间隔很长(15~20年)的50~100兆瓦的组合。LFR是一个小型的工厂制造的交钥匙电厂,可满足市场上对小电网发电的需求。

液态钠冷却快堆(sodium-cooled fast reactor,SFR)系统是快中子谱钠冷堆,它采用可有效控制锕系元素及可转换铀的转化的闭式燃料循环。SFR系统主要用于管理高放射性废弃物,尤其在管理钚和其他锕系元素方面。该系统有两个主要方案:中等规模核电站,即功率为150~500兆瓦,燃料用铀-钚-次锕系元素-锆合金;中到大规模核电站,即功率为500~1 500兆瓦,使用铀-钚氧化物燃料。

该系统由于具有热响应时间长、冷却剂沸腾的裕度大、一回路系统在接近大气压下运行,并且该回路的放射性钠与电厂的水和蒸汽之间有中间钠系统等特点,因此安全性能好。

熔盐堆系

熔盐反应堆(molten salt reactor,MSR)系统是超热中子谱堆,燃料是钠、锆和氟化铀的循环液体混合物。熔盐燃料流过堆芯石墨通道,产生超热中子谱。MSR系统的液体燃料不需要制造燃料元件,并允许添加钚这样的锕系元素。锕系元素和大多数裂变产物在液态冷却剂中会形成氟化物。熔融的氟盐具有很好的传热特性,可降低对压力容器和管道的压力。参考电站的功率水平为1000兆瓦,冷却剂出口温度700~800℃,热效率高。

冷堆系统

超高温气冷堆(very high temperature reactor,VHTR)系统是一次通过式铀燃料循环的石墨慢化氦冷堆。该反应堆堆芯可以是棱柱块状堆芯(如日本的高温工程试验反应器HTTR),也可以是球床堆芯(如中国的高温气冷试验堆HTR-10)。

VHTR(超高温气冷堆)系统提供热量,堆芯出口温度为1 000℃,可为石油化工或其他行业生产氢或工艺热。该系统中也可加入发电设备,以满足热电联供的需要。此外,该系统在采用铀/钚燃料循环,使废物量最小化方面具有灵活性。参考堆采用600兆瓦堆芯。

超临界水冷堆

超临界水冷堆(super-critical water-cooled reactor,SCWR)系统是高温高压水冷堆,在水的热力学临界点(374℃,22.1兆帕)以上运行。超临界水冷却剂能使热效率提高到轻水堆的约1.3倍。该系统的特点是,冷却剂在反应堆中不改变状态,直接与能量转换设备相连接,因此可大大简化电厂配套设备。燃料为铀氧化物。堆芯设计有两个方案,即热中子谱和快中子谱。参考系统功率为1 700兆瓦,运行压力是25兆帕,反应堆出口温度为510~550℃。

组成结构

反应堆的类型很多,但它主要由活性区,反射层,外压力壳和屏蔽层组成。活性区又由核燃料,慢化剂, 冷却剂和控制棒等组成。当前用于原子能发电站的反应堆中, 压水堆是最具竞争力的堆型(约占61%), 沸水堆占一定比例(约占24%),重水堆用的较少(约占5%)。压水堆的主要特点是:

1)用价格低廉、到处可以得到的普通水作慢化剂和冷却剂,

2)为了使反应堆内温度很高的冷却水保持液态,反应堆在高压力(水压约为15.5 MPa )下运行,所以叫压水堆;

3)由于反应堆内的水处于液态,驱动汽轮 发电机组的蒸汽必须在反应堆以外产生;这是借助于蒸汽发生器实现的,来自反应堆的冷却水即一回路水流入蒸汽发生器传热管的一侧,将热量传给传热管另一侧的二回路水,使后者转变为蒸汽(二回路蒸汽压力为6—7 MPa,蒸汽平均温度为310℃,以大亚湾核电厂为例);

4)由于用普通水作慢化剂和冷却剂,热 中子吸收截面较大,因此不可能用天然铀作核燃料,必须使用浓缩铀(铀-235的含量为2—4%)作核燃料。沸水堆和压水堆同属于 轻水堆,它和压水堆一样,也用普通水作慢化剂和冷却剂,不同的是在沸水堆内产生蒸汽(压力约为7 MPa),并直接进入气轮机发电,无需蒸汽发生器,也没有一回路与二回路之分,系统特别简单,工作压力比压水堆低。然而,沸水堆的蒸汽带有放射性,需采取屏蔽措施以防止放射性泄漏。重水堆是用重水作慢化剂和冷却剂,因为其热中子吸收截面远小于普通水的热中子吸收截面,所以可以用天然铀作为重水堆的核燃料。所谓热中子,是指铀-235原子核裂变时射出的快中子经慢化后速度降为2200 m/s、能量约为1/40 eV的中子。热中子引起铀-235核裂变的可能性,比被铀-238原子核俘获的可能性大190倍。这样,在以天然铀为燃料的重水堆中,核裂变链锁反应可持续进行下去。由于重水慢化中子不如普通水有效,因此重水堆的堆芯比轻水堆大得多,使得压力容器制造变得困难。重水堆仍需配备蒸汽发生器,一回路的重水将热量带到蒸汽发生器,传给二回路的普通水以产生蒸汽。重水堆的最大优点是不用浓缩铀而用天然铀作核燃料,但是阻碍其发展的重要原因之一是重水很难得到,因为在天然水中重水只占1/6500。

回答2:

关于“奥克洛核反应堆”有不少关于史前文明的说法,这些都是有缺陷的推论,真相是这样的:
1972年,法国从非洲加蓬共和国进口一些铀矿石,准备用于核工业。这些铀矿石产于奥克洛地区,但是,经过同位素分析后发现,U235的平均浓度竟然只有0.62%,比U235的正常浓度0.72%低得多。为了研究这一特殊现象,科学家们到分布为带状的奥克洛铀矿区的各点取样,然后做同位素分析,又发现了浓度低于0.3%的贫化铀(U235浓度小于其天然浓度0.72%的铀)。通过认真的科学研究后发现,在20亿年前,由于地质的变迁,有水渗入到奥克洛铀矿区,从而引发了奥克洛铀矿中的铀进行了天然的自持链式核裂变反应,从而使奥克洛铀矿区U235的浓度值严重低于正常值。这是人们发现的一例天然(并非人造)核反应堆,被称之为奥克洛现象。

  其实,对于奥克洛现象,科学家们早在60年代就有预言,比如,我国著名的科学家,中国科学院学部委员侯德封先生,在60年代就明确指出,由于U235的放射性半衰期,也就是U235在放射性衰变过程中,原子核的数目或U235的浓度,减少到原来数目的一半时,所需要的时间大约为7亿年,因此,现在天然U235的正常浓度为0.72%,但是在几十亿年前,也就是地球形成后的几十亿年中,铀矿中U235的浓度却远高于今天的浓度,也就是天然的浓缩铀,如果自然条件具备的话,就会发生天然的自持链式核裂变反应。国外科学界的同行们也相继作出了同样的预见,美国的一些科学家明确指出,20亿年前的铀矿石中U235的浓度足以产生天然连锁反应,并且明确地给出了天然铀矿发生天然自持链式核裂变反应的条件。很快,在1972年,科学家们的预见被证实了。

那么,形成天然核反应堆很难吗?其实,对于20亿年前的U235的浓度来说,实在是太容易了,要求的条件也非常简单。

  首先是U235的浓度一般至少要超过1%。因为正常情况下,一般动力核反应堆使用的核燃料都是浓度超过1%、一般不超过5%的低浓度U235。现在U235的正常浓度是0.72%,而U235的半衰期大约为7亿年,也就是说,每往前推7亿年,其浓度就应该是现在浓度的一倍,那么20亿年前的U235正常浓度就远高于3%!

  其次就是,U235在放射性衰变过程中,会放出中子,如果其他U235的核吸收一个中子后,通常会分裂成两个小核,并放出2到3个快中子,同时释放出能量。如果放出的这些中子,只要有1个以上能够被其他U235俘获,就能发生核裂变反应。但是,U235裂变产生的是快中子,不容易被俘获,所以反应堆需要慢化材料,如水(矿床局部断裂可以引起水的渗透)或碳等来减慢快中子的速度。当铀矿中沉积的铀浓度较高,同时堆块质量或者是堆块体积超过临界值时,中子被俘获的机会就会大大增加,核裂变反应也就非常容易发生了。

  如果上述核裂变反应不断加剧,释放的能量过多,就会使温度升高到一定程度(此时若不加以控制,反应会更加剧烈,就会发生核爆炸),慢化材料水就会汽化为蒸汽,前面提到的对快中子的慢化效应就会降低,连锁反应减慢。这个自然调节机制使得反应堆能够稳定地运行,这样就形成了自持链式核裂变反应。可见,奥克洛现象完全是地球演化过程中发生的自然现象,并不是史前人类的杰作。
——参考 百度_百科

回答3:

其实这些事情,都算得上是一种未解之谜,这些也都是大自然的力量,科学家通过研究发现,这些反应堆也并非是人为造成的,而是大自然的手笔。在20亿年前,这片矿区的U235含量可能在3%,是浓度很高的,这么高的浓度如果遇到普通的水就会产生反应。恰好这片矿区周围存在着地下水,这样核反应就持续了20亿年。当核反应剧烈反应之后周围温度会变高,地下水随之蒸发变少。

没有了水,核反应堆就停止了反应。慢慢的地下水有开始聚集,核反应又开始。这样断断续续的持续了20亿年之久。

加蓬共和国,位于非洲中部西海岸,一个拥有丰富的矿产资源,非常富饶的国家。在这个国家,有非常多的铀矿,这也是核原料,核武器和核反应堆的核心部分。在四十多年前,法国从加蓬进口了一批铀矿,本打算作为核原料。但是运回来之后经过化验发现,U235的平均浓度只有0.62%。而正常情况下,U235的平均浓度是0.72%。这一特别的发现,让科学家们非常好奇,很多人亲自到加蓬的这个铀矿区实地考察。

这次考察注定是一次不平凡的旅行。科学家竟然在这个矿区发现了17个核反应堆。这些反应堆非常的古老,在20亿千年就开始进行核反应了。在现代,核反应堆的建设是非常复杂的工程。除了铀矿以外需要重水、石墨,还需要精密的设备,如果稍不留意还会发生核爆炸。那么在加蓬发现的核反应堆持续了20亿年,没有核爆炸,而且还不断地平均输出功率为100千瓦的能量。

其实这也就是说,当人们发现这片铀矿区的时候,其实已经成为被用过的铀矿渣了。