f(x)=sin(πx/4-π/6)-2cos^2(πx/8)+1
=√3/2*sin(πx/4)-1/2*cos(πx/4)-cos(πx/4)
=√3/2*sin(πx/4)-3/2*cos(πx/4)
=√3sin(πx/4-π/3)
∴T=2π/(π/4)=8
当x∈[0,4/3]时
关于x=1对称的区间:
x∈[2/3,2]
∴求y=g(x)在x∈[0,4/3]时的最大值,就是要求f(x)在[2/3,2]上的最大值
∵x∈[2/3,2]
∴πx/4-π/3∈[-π/6,π/6]
∴当πx/4-π/3=π/6时
即:x=2时
f(x)max=√3sin(π/6)=√3/2
=g(x)max