如此辛苦,望请采纳
(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.
又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,
∴AA1⊥平面ABC.
(II)解:由AC=4,BC=5,AB=3.
∴AC2+AB2=BC2
∴AB⊥AC
以A为原点建立空间直角坐标系,
则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4)
BC1=(4,−3,4),BA1=(0,−3,4),BB1=(0,0,4)
设平面A1BC1的法向量为n1=(x1,y1,z1),
平面B1BC1的法向量为n2=(x2,y2,z2).
则n1=(0,4,3)
n2=(3,4,0)
cos<n1,n2>=16/25
(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.
又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,
∴AA1⊥平面ABC.
(II)解:由AC=4,BC=5,AB=3.
∴AC2+AB2=BC2
∴AB⊥AC