这种题目,考查了我们的三角函数的基本的变形的能力。第三问,正弦的值域为正负一的闭区间。故,无解
f(x)=2cosxsin(x+π/3)-√3(sinx)^2+sinxcosx
=2cosx(sinx/2+√3cosx/2)-√3(1-cos2x)/2+sin2x/2
=sinxcosx+√3(1+cosx)/2-√3/2+√3cos2x/2+sin2x/2
=sin2x+√3cos2x
=2sin(2x+π/3)
0<=x<=π/2
0<=2x<=π
π/3<=2x+π/3<=4π/3
所以最大值为2,当x=π/12
最小值为-√3,当x=π/2
f(x)=2cosxsin(x+π/3)-√3(sinx)^2+sinxcosx
=2cosx(sinx/2+√3cosx/2)-√3(1-cos2x)/2+sin2x/2
=sinxcosx+√3(1+cosx)/2-√3/2+√3cos2x/2+sin2x/2
=sin2x+√3cos2x
=2sin(2x+π/3) 所以当2x+π/3=1 最大值为2 当2x+π/3=-1 最小值为-2