(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)
=(1/2)(3-1)(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)
=(1/2)(3^2-1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)
=(1/2)(3^4-1)(3^4+1)(3^8+1)(3^16+1)
=(1/2)(3^8-1)(3^8+1)(3^16+1)
=(1/2)(3^16-1)(3^16+1)
=(1/2)(3^32-1)
=3^32/2-1/2
明教为您解答,
如若满意,请点击[满意答案];如若您有不满意之处,请指出,我一定改正!
希望还您一个正确答复!
祝您学业进步!
解:根据平方差公式(a+b)(a-b)=a^2-b^2得[3^(2n)-1][3^(2n)+1]=3^(4n)-1
原式=(3-1)(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)/(3-1)
=(3^2-1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)/(3-1)
=(3^4-1)(3^4+1)(3^8+1)(3^16+1)/(3-1)
=……
=(3^32-1)/2
您好,很高兴为您答疑解惑
如果本题有什么不明白可以追问,如果满意记得采纳
如果有其他问题请采纳本题后另发点击向我求助,答题不易,请谅解,谢谢。
祝学习进步
(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)
=(1/2)(3-1)(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)
=(1/2)(3^2-1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)
=(1/2)(3^4-1)(3^4+1)(3^8+1)(3^16+1)
=(1/2)(3^8-1)(3^8+1)(3^16+1)
=(1/2)(3^16-1)(3^16+1)
=(1/2)(3^32-1)
提示:运用平方差公式