(1)过C作AB的平行线交于DF于G点
AE:EC=AD:CG
BF:CF=BD:CG=AD:CG
则BD=AD,即D是AB的中点
(2)
△AOD∽△COB
OA/OC=OD/OB
△DOC∽△BOE
OD/OB=OC/OE
OA/OC=OC/OE
OC²=OA·OE
希望能帮到你!
1
作CG平行AB,交DF于G
AE:EC=AD:CG
BF:CF=BD:CG=AD:CG
则BD=AD,即D是AB的中点
2
OC:OA=OB:OD=BE:CD
OE:OC=BE:CD=OC:OA
即OC方=OA*OE
(1)过C作AB的平行线交于DF于G点
△CEG∽△AED
AE/EC=BF/CF
∴AD=DB
D为AB中点
(2)
先证明△AOD∽△COB
得出OA/OC=OD/OB
在证明△DOC∽△BOE
得出OD/OB=OC/OE
∴OA/OC=OC/OE
∴OC²=OA·OE