f(x)=√3sin2x+2cos^2x+3
=√3sin2x+cos2x+4
=2sin(2x+π/6)+4
(1)
0<=x<=π/2,
那么有π/6<=2x+π/6<=7π/6
-1/2<=sin(2x+Pai/6)<=1
故有4-2*1/2<=f(x)<=4+1*2
即有值域是[3,5]
(2)
若f(x)=28/5;
则2sin(2x+π/6)+4=28/5;
sin(2x+π/6)=4/5;
已知x属于(π/6,5π/12), 2x+π/6∈(π/2, π);
故cos(2x+π/6)=-√[1-sin²(2x+π/6)]=-3/5;
cos(2x-π/12);
=cos[(2x+π/6)-π/4];
=cos(2x+π/6)cos(π/4)+sin(2x+π/6)sin(π/4);
=(-3/5)*(√2/2)+(4/5)(√2/2);
=√2/10;
很高兴为您解答,祝你学习进步!
有不明白的可以追问!如果您认可我的回答,请选为满意答案,并点击好评,谢谢!