已知△ABC中,角A,B,C的对边分别是a,b,c,G是△ABC重心,且56sinA×向量GA+40sinB×向量GB+35sinC×向量GC=0

2024-12-16 01:58:59
推荐回答(2个)
回答1:

 

 

有点难算啊,求采纳朋友

回答2:

56sinAGA+40sinBGB+35sinCGC=0
即:56aGA+40bGB+35cGC=0
G是重心,故:GA+GB+GC=0
故:56aGA+40bGB+35c(-GA-GB)=0
即:(56a-35c)GA+(40b-35c)GB=0
即:56a=35c,40b=35c
即:8a=5c,8b=7c,令c=k
则:a=5k/8,b=7k/8
即:a:b:c=5:7:8
令:a=5t,b=7t,c=8t,则:
cosB=(a^2+c^2-b^2)/(2ac)
=(25t^2+64t^2-49t^2)/(80t^2)
=1/2,故:B=π/3