为何1=0.99999999...(无限循环)

2024-12-26 07:46:38
推荐回答(5个)
回答1:

找到一些
证明的方法有很多:

第一种,最简单的:
设x=0.9999999999999……,那么10x=9.99999999999……,得到
10x-x=9
得x=1

第二种,也很简单的:
设x=0.999999999999……,那么x/3=0.333333333333……=1/3,得
x/3=1/3
x=1

第三种,稍微要绕一点脑筋:
你用竖式计算1除以1(竖式应该会吧,小学学过的),不同的是一开始不要直接商1,而要商0,那么余数是1,添加一个0变成10,然后商9,10-9=1,又得到余数是1,再按照上面的方法进行计算,就会算出来1/1=0.9999999……

第四种,可以用极限来做:
等比数列的求和公式是[a1(1-q^n)]/(1-q),那么当q<1且n->无穷大的时候,这个式子的极限就是a1/(1-q)。由于循环小数0.aaaaaaaaa……=a/10+a/100+a/1000+a/10000+……,它的每一个加数刚好构成一个无穷的等比数列,而且q=1/10,那么就可以用a1/(1-q)计算0.99999999……,此时a1=0.9,q=1/10,很容易就可以得到0.9999999999……=0.9/(1-1/10)=1

以上就是常见的证明0.99999999999……=1的方法。方法还有很多种。最后结果都是:0.999999999……=1。

另外,我还可以明确地告诉你,以上的推理过程都是比较严密的,不要相信所谓的0.3333333333……只是约等于1/3,0.9999999999……<1。至少在我们所使用的数学中,0.999999999……=1。

你也可以在百度上查找有关的资料,特别是百度知道上有过这种争论。

回答2:

因为它们两个的差值是无限接近于零的数。

回答3:

1=0.99999999...(无限循环)
无限趋近于 1 就是 1

回答4:

回答得好专业,不过第一种应该是 10x-x=9x

其他的不好说。。

回答5:

因为它们的差距无穷小。