P=(1/y)+yf(xy) Q=xf(xy)-x/y^2
∂P/∂y=-1/y^2+f(xy)+xyf'(xy) ∂Q/∂x=f(xy)+xyf'(xy)-1/y^2
∂P/∂y=∂Q/∂x
∴曲线积分I与路径无关。
I=∫(3,1)[f(y)-1/y^2]dy+∫(1,3)[1+f(x)]dx=∫(1,3)[-f(y)+1/y^2]dy+∫(1,3)[1+f(x)]dx
=∫(1,3)[1+1/x^2]dx=(x-1/x)︱(1,3)=8/3