求解一道不定积分题,用分部积分法做

2025-01-04 04:26:49
推荐回答(2个)
回答1:

首先降幂
=x(1-cos2x)/2
其中,xcos2xdx=0.5xd(sin2x)=0.5xsin2x+0.5sin2xdx,积分即可

回答2:

∫xsin²xdx

=∫x·[(1-cos2x)/2]dx——【三角函数倍角公式】

=(1/2)∫(x-xcos2x)dx

=(1/2)∫xdx-(1/2)∫xcos2xdx

=(1/4)x²-(1/4)∫xd(sin2x)

=(1/4)x²-(1/4)[x·sin2x-∫sin2xdx]

=(1/4)x²-(1/4)x·sin2x+(1/4)∫sin2xdx

=(1/4)x²-(1/4)x·sin2x-(1/8)cos2x+C