麦克斯韦方程组的积分形式:
麦克斯韦方程组的积分形式 麦克斯韦方程组的积分形式[1]
这是1873年前后,麦克斯韦提出的表述电磁场普遍规律的四个方程。其中:
(1)描述了电场的性质。在一般情况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献。
(2)描述了磁场的性质。磁场可以由传导电流激发,也可以由变化电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对封闭曲面的通量无贡献。
(3)描述了变化的磁场激发电场的规律。
(4)描述了变化的电场激发磁场的规律。
变化场与稳恒场的关系:
当稳恒场 稳恒场
时,方程组就还原为静电场和稳恒磁场的方程:
在没有场源的自由空间,即q=0, I=0,方程组就成为如下形式:无场源的自由空间中麦克斯韦方程组 无场源的自由空间中麦克斯韦方程组
麦克斯韦方程组的积分形式反映了空间某区域的电磁场量(D、E、B、H)和场源(电荷q、电流I)之间的关系。
编辑本段微分形式麦克斯韦方程组微分形式:在电磁场的实际应用中,经常要知道空间逐点的电磁场量和电荷、电流之间的关系。从数学形式上,就是将麦克斯韦方程组的积分形式化为微分形式。利用矢量分析方法,可得:麦克斯韦方程组微分形式 麦克斯韦方程组微分形式
注意:(1)在不同的惯性参照系中,麦克斯韦方程有同样的形式。
(2) 应用麦克斯韦方程组解决实际问题,还要考虑介质对电磁场的影响。例如在各向同性介质中,电磁场量与介质特性量有下列关系:
在非均匀介质中,还要考虑电磁场量在界面上的边值关系。在利用t=0时场量的初值条件,原则上可以求出任一时刻空间任一点的电磁场,即E(x,y,z,t)和B(x,y,z,t)。
麦克斯韦方程组微分形式(高斯单位制)麦克斯韦方程组微分形式(高斯单位制) 麦克斯韦方程组微分形式(高斯单位制)
麦克斯韦方程组 Maxwell's equations
方程组的微分形式,通常称为麦克斯韦方程。 在麦克斯韦方程组中,电场和磁场已经成为一个不可分割的整体。该方程组系统而完整地概括了电磁场的基本规律,并预言了电磁波的存在。
麦克斯韦提出的涡旋电场和位移电流假说的核心思想是:变化的磁场可以激发涡旋电场,变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激发组成一个统一的电磁场。麦克斯韦进一步将电场和磁场的所有规律综合起来,建立了完整的电磁场理论体系。这个电磁场理论体系的核心就是麦克斯韦方程组。
编辑本段复数形式对于正弦时变场,可以使用复矢量将电磁场定律表示为复数形式。麦克斯韦方程组复数形式 麦克斯韦方程组复数形式
在复数形式的电磁场定律中,由于复数场量和源量都只是空间位置的函数,在求解时,不必再考虑它们与时间的依赖关系。因此,对讨论正弦时变场来说面采用复数形式的电磁场定律是较为方便的。