已知f(x)=x^2+ax+3-a,若x属于[-2,2]时,f(x)大于等于0恒成立,求a的范围

2025-01-01 05:46:50
推荐回答(1个)
回答1:

若y= x^2 + ax +3 -a 的顶点处于[-2,2],
则判别式 a^2 - 4*1*(3-a)需<=0
在-2<= -a/2 <= 2 即 -4<= a <= 4时,
解不等式 a^2 - 4*1*(3-a)<=0
a^2 +4a -12<=0
(a+6)(a-2)<=0
得-6<=a<=2
交集是 -4<=a<=2

或者 顶点处于[-2,2] 之外, 即a<= -4 或 a>=4
此时f(x) 在[-2,2]上单调有f(2)>=0, f(-2) >=0
f(-2)= 4-2a +3-a = 7-3a
f(2) = 4+2a +3-a= 7+a
f(2)>=0 f(-2)>=0 即
(7-3a)>=0,(7+a)>=0
a<=7/3 , a>=-7

-7<=a<=7/3
交集是-7<=a<=-4

所以a的范围是 -7 <=a <=-4 并 -4 <=a<=2
得 -7 <= a <=2