因为(x-1)(x^n+x^n-1+x^n-2+……+x+1)=(x^n+1)-1
所以
(-2-1)[(-2)^50+(-2)^49+(-2)^48+(-2)^47+……+(-2)+1]=(-2)^(50+1)-1=(-2)^51-1
则
(-2)^50+(-2)^49+(-2)^48+(-2)^47+……+(-2)+1
=-1/3[(-2)^51-1]=(1+2^51)/3
因为(-2)^51=-2^51
(x-1)(x^n+x^n-1+x^n-2+……+x+1)=(x^n+1)-1
(-2)^50+(-2)^49+(-2)^48+(-2)^47+……+(-2)+1
=(-2-1)*[(-2)^50+(-2)^49+(-2)^48+(-2)^47+……+(-2)+1]/(-2-1)
=[(-2)^51-1]/(-2-1)
=(2^51+1)/3