解:(1)2/n(n+2)=1/n-1/(n+2)(2)1/n-1/(n+2)=(n+2-n)/n(n+2)=2/n(n+2)(3)设和为S,则2s=[2/(1*3)+2/(3*5)+...+2/(49*51)]+[2/(2*4)+2/(4*6)+...+2/(48*50)=(1-1/3+1/3-1/5+...+1/49-1/51)+(1/2-1/4+1/4-1/6+...+1/48-1/50)=1-1/51+1/2-1/50=1862/1275∶原式=931/1275