嘿嘿,这里就是考你会不会区别面积分和重积分的地方了。
面积分的被积函数是建构在曲面方程上的,x² + y² + z² = a²,只包含方程的部分
积分域:{ x,y,z | Σ:x² + y² + z² = a² }
仅包括 = a²的部分,所以线积分和面积分都可以直接把积分域代入被积函数里。
而重积分的被积函数是建构在整个空间里的,x² + y² + z² ≤ a²,包含方程和方程里包含的空间
积分域:{ x,y,z | Ω:x² + y² + z² ≤ a² }
包括了① = a²的部分和② < a²的部分
如果把积分域代入被积函数,只有①的部分,而忽略了②的部分,这岂不是变成「球面」积分而不是「球体」积分吗??
例如对于积分域Σ:x² + y² + z² = a²,∫∫Σ (x² + y² + z²) dS = ∫∫Σ (a²) dS
但是∫∫∫Ω (x² + y² + z²) dV ≠ ∫∫∫Ω (a²) dV
这样清楚吧,曲面积分还是猛些的。
所以3∫∫∫Ω (x² + y² + z²) dV的正确做法是球坐标
= 3∫(0,2π) ∫(0,π) ∫(0,a) (r²) * (r²sinφ drdφdθ)