解:设原式=s
则2s=2/(1*3)+2/(2*4)+2/(3*5)+...+2/(49*51)
=[2/(1*3)+2/(3*5)+...+2/(49*51)]+[2/(2*4)+2/(4*6)+...+2/(48*50)]
=(1/1-1/3+1/3-1/5+...+1/49-1/51)+(1/2-1/4+1/4-1/6+...+1/48-1/50)]
=1-1/51+1/2-1/50
=50/51+12/25
=1862/1275
∴原式=986/1275
1/(1*3)+1/(2*4)+1/(3*5)+...+1/(49*51)=0.5*(1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+……+1/49-1/51)=0.5*(1+1/2-1/50-1/51).