求助:已知函数f(x)=sin²x+2(√3)sinxcosx-(1/2)cos2x,x∈R,
(1)求f(x)的最小正周期和值域;
(2)若x。(0≦x。≦π/2)为f(x)的一个零点,求sin2x。的值。
解:(1)。f(x)=(1-cos2x)/2+(√3)sin2x-(1/2)cos2x=(√3)sin2x-cos2x+1/2
=2[(√3/2)sin2x-(1/2)cos2x]+1/2=2[sin2xcos(π/6)-cos2xsin(π/6)]+1/2
=2sin(2x-π/6)+1/2;故最小正周期T=2π/2=π;值域:[-3/2,5/2]
(2)。令f(x)=2sin(2x-π/6)+1/2=0,得sin(2x₀-π/6)=-1/4,0≦x。≦π/2;0≦2x。≦π;
-π/6≦2x。-π/6≦5π/6;
∴2x₀-π/6=π-arcsin(1/4), 2x₀=π+π/6-arcsin(1/4)...............(1);
或2x₀-π/6=2π-arcsin(1/4), 2x₀=2π+π/6-arcsin(1/4).............(2);
故由(1)得:
sin2x₀=sin[π+π/6-arcsin(1/4)]=-sin[π/6-arcsin(1/4)]
=-[sin(π/6)cosarcsin(1/4)-cos(π/6)sinarcsin(1/4)]
=-[(1/2)√(1-1/16)]+(√3/2)(1/4)=-(√15)/8+√3/8=(-√15+√3)/8=-(√15-√3)/8;
或由(2)得:
sin2x₀=sin[2π+π/6-arcsin(1/4)]=sin[π/6-arcsin(1/4)]
=sin(π/6)cosarcsin(1/4)-cos(π/6)sinarcsin(1/4)=(√15)/8-(√3/2)(1/4)=(√15-√3)/8;
即sin2x₀=±(√15-√3)/8;