一个月前,DeepMind创始人Demis Hassabis曾说道很快会有关于围棋研究的惊喜,而1月28日的《Nature》杂志即将以封面论文的形式介绍Google旗下人工智能公司DeepMind开发的一款名为AlphaGo的人工智能,它已经击败了欧洲围棋冠军,并将于3月与世界冠军李世乭对战。该程序采用了两个深度神经网络,policy network与value network,极大地降低了需要考虑的搜索空间的复杂度,前者降低搜索的广度,后者降低搜索的深度,很像人脑在下围棋时凭直觉快速锁定策略的思维。
这么说起给一点时间,巅峰的吴清源,李昌镐这类人物(即使不断学习)也是下不过电脑的了? (我指的电脑就是2015一台中等配置的PC这样,不是服务器集群,类似普通电脑跑Pocket Fritz 4)
今天(3-12-2016) AlphaGo 已经3:0领先Lee Sedol了
这个并不是太出人意料。我记得十年前就有人说,十年内这个问题可以解决。可能那时候他就已经有点思路了吧。
这个问题能解决到这个程度,Google的确做出了很大的贡献,我想很多同样看上去很难的问题也并不是不能解决,而是我们愿不愿意解决,愿意花多大的精力在上面。我觉得这点启发非常重要,尤其是在深度网络这类新技术出现的时候,有很多地方简单地应用一下就能有新的突破。
老实说,我看了AlphaGo的思路,跟我之前的思路差不了太多,我在2015年1月份就看过一篇利用卷积神经网络来下棋的论文(神经网络可能终将在围棋上打败人类),并且有种豁然开朗的感觉,还想出了改进的思路(论文中的程序实际上有比较明显的缺陷,而去掉其中的缺陷就是一条更为完善的思路),真正的理论层面的突破是那篇论文,那篇论文写出来,就决定了今天只用了一年左右的时间AlphaGo能达到这个程度,Google的贡献在于将理论更好地改进和实践了,他们更有实力来解决这样的问题,不是像那篇论文里的程序,使用比较纯粹的神经网络,那样想要达到顶尖水准很有难度。
值得反省的是,为什么围棋作为东方人的游戏,却不是我们自己来解决这个问题?我觉得国内一定有人看到解决思路了,既然我这种业余爱好者都能看出点眉目。