原式=1×(1+2)+2×(2+2)+3×(3+2)+……+n(n+2)
=1²+2²+3²+……+n²+2×(1+2+3+……+n)
=1/6×n(n+1)(2n+1)+n(n+1)
=1/6n(n+1)(2n+7)
an=n(n+2)=n²+2n
且1²+2²+..+n²=n(n+1)(2n+1)/6
则
Sn=1²+2+2²+2x2..+n²+2n
=(1²+2²+..+n²)+2(1+2+..+n)
=n(n+1)(2n+1)/6+n(n+1)
=n(n+1)[(2n+1)+6]/6
=n(n+1)(2n+7)/6