(1)∵数列{an}的前n项和为Sn,且Sn=n2+2n,
n=1时,a1=S1=3,
n≥2时,an=Sn-Sn-1=(n2+2n)-[(n-1)2+2(n-1)]=2n+1,
n=1时也成立,
∴an=2n+1.
(2)bn=
=1 Sn
=1 n(n+2)
(1 2
?1 n
),1 n+2
∴Tn=
[(1?1 2
)+(1 3
?1 2
)+(1 4
?1 3
)+…(1 5
?1 n?2
)+(1 n
?1 n?1
)+(1 n+1
?1 n
)]1 n+2
=
(1+1 2
?1 2
?1 n+1
)1 n+2
=
9n2+15n 4(n+1)(n+2)
(3)cn+1=acn+2n,即cn+1=2cn+1+2n,
假设存在这样的实数,满足条件,
又c1=1,c2=2c1+1+2=9,c3=2c2+1+22=23,
,3+λ 2
,9+λ 4
成等差数列,23+λ 8
即2×
=9+λ 4
+3+λ 2
,23+λ 8
解得λ=1,此时
?
cn+1+1 2n+1
=
cn+1 2n
cn+1=1?2(cn+1) 2×2n
=
=
cn+1?2cn?1 2×2n
=1+2n?1 2×2n
,1 2
数列{
}是一个等差数列,
cn+1 2n
∴λ=1.