已知数列{an}的前n项和为Sn,且Sn=n2+2n,(1)求数列{an}的通项公式;(2)令bn=1Sn,且数列{bn}的前n项

2025-01-25 02:34:10
推荐回答(1个)
回答1:

(1)∵数列{an}的前n项和为Sn,且Sn=n2+2n,
n=1时,a1=S1=3,
n≥2时,an=Sn-Sn-1=(n2+2n)-[(n-1)2+2(n-1)]=2n+1,
n=1时也成立,
∴an=2n+1.
(2)bn

1
Sn
1
n(n+2)
1
2
(
1
n
?
1
n+2
),
Tn
1
2
[(1?
1
3
)+(
1
2
?
1
4
)+(
1
3
?
1
5
)+…(
1
n?2
?
1
n
)+(
1
n?1
?
1
n+1
)+(
1
n
?
1
n+2
)]

=
1
2
(1+
1
2
?
1
n+1
?
1
n+2
)

=
9n2+15n
4(n+1)(n+2)

(3)cn+1acn+2n,即cn+1=2cn+1+2n
假设存在这样的实数,满足条件,
又c1=1,c2=2c1+1+2=9,c3=2c2+1+22=23
3+λ
2
9+λ
4
23+λ
8
成等差数列,
9+λ
4
3+λ
2
+
23+λ
8

解得λ=1,此时
cn+1+1
2n+1
?
cn+1
2n
=
cn+1=1?2(cn+1)
2n

=
cn+1?2cn?1
2n
=
1+2n?1
2n
=
1
2

数列{
cn+1
2n
}是一个等差数列,
∴λ=1.