①.cos2a=cos((a+b)+(a-b))=cos(a+b)*cos(a-b)-sin(a+b)*sin(a-b)
又因为3/2π小于a+b小于2π,即在第四象限,π/2小于a-b小于π,即在第二象限
所以sin(a+b)0,sin(a-b)0
值=(4/5)*(-4/5)-(3/5)*(-3/5)=-7/25
②.第二题b是π/2bπ吧?
tana+tanb=5/6
tana*tanb=1/6
tan(a+b)=(tana+tanb)/(1-tana*tanb)
=5/6/(1-1/6)=1
a+b=π/4(4/π)
③.x属于(0,π/4)
0π/4-xπ/4
所以cos(π/4-x)0
[sin(π/4-x)]^2+[cos(π/4-x)]^2=1
所以cos(π/4-x)=12/13
sin(π/2-2x)=2sin(π/4-x)cos(π/4-x)=120/169
所以cos2x=sin(π/2-2x)=120/169
cos(π/4+x)=sin[π/2-(π/4+x)]=sin(π/4-x)=5/13
所以
(cos2x)/cos(π/4+x)=(120/169)/(5/13)=24/13
④.因为 √(2+2cosa)
=√(2+2(2cos^2(a/2)-1)
=√(4cos^2(a/2)) 又因为a属于(π,2π) 所以cos(a/2)0
所以 =-2cos(a/2)
又因为 1+sina+cosa
=1+2sin(a/2)cos(a/2)+2cos^2(a/2)-1
=2cosa/2*(sina/2+cosa/2)
所以综上:(1+sina+cosa)[(sin(a/2-cos(a/2)]/√(2+2cosa)
=[2cosa/2*(sina/2+cosa/2)](sina/2-cosa/2)/(-2cosa/2)
=(sin^2a/2-cos^2a/2)
=-cosa
⑤.化简:f(x)=sin(x/2)+根号3cos(x/2) 根据化一公式, f(x)=2sin((x/2)+π/3)
所以最小正周期T=2π /(1/2)=4π,当x=7/6时取最小值 f(x)min=-2
单增区间: -π/2+2kπ(x/2)+π/3π/2+2kπ 求得 -5π/3+4kπxπ/3+4kπ
⑥.化简: f(x)=(sinwx)^2+根号3sinwxcoswx=1/2*(1-cos2wx)+1/2*根号3*sin2wx
=1/2*(根号3*sin2wx-cos2wx)+1/2=sin(2wx-π/6)+1/2
又因为T=π 即 2π/2w=π 所以w=1