你好
1/(1+√2)+1/(√2+√3)+1/(√3+√4)+......1/(√99+√100 )
=(1-√2)/(1+√2)(1-√2)+(√2-√3)/(√2+√3)(√2-√3)+...
+(√99-√100 )/(√99+√100 )(√99-√100 )
=(1-√2)/(-1)+(√2-√3)/(-1)+...+(√99-√100 )/(-1)
=(1-√2+√2-√3+...+√99-√100 )/(-1)
=(1-√100 )/(-1)
=√100-1
=10-1
=9
【数学辅导团】为您解答,如果本题有什么不明白可以追问,如果满意记得采纳
祝学习进步!
√5写成了吧 否则这个式子没有规律了
解:
1/(1+√2)+1/(√2+√3)+1/(√3+√4)+......1/(√99+√100)
=(√2-1)/[(1+√2)(√2-1)]+(√3-√2)/[(√2+√3)(√3-√2)]+(√4-√3)/[(√3+√4)(√4-√3)]+......+(√100-√99)/[(√99+√100)(√00-√99)]
=(√2-1)+(√3-√2)+(√4-√3)+……+(√100-√99)
=√2-1+√3-√2+√4-√3+……+√100-√99
=√100-1 (中间两项两项相减抵消了)
=10-1
=9