int fun(int x,int y){
if(x%y==0)
return y;
else
return fun(y,x%y);
}
原理
首先给定两个数a,b(a>b),则根据除法运算,a/b=q......r。q是商,r是余数。也可以表示为a=bq+r。这是小学就知道的。
下面给出一个定理:
若a=bq+r,则(a,b)=(b,r),即a,b的最大公约数等于b,r的最大公约数。
举个例子来说:
24=10*2+4,那么(24,10)=(10,4)=2
这个定理的证明也很简单。
设c是a和b的任意一个公约数,则c能同时整除a和b,即a=cx,b=cy,(x,y是整数)
将它们代入“a=bq+r”中:
cx=cyq+r
得到r=c(x-yq),说明c也能整除r,即c也是b和r的公约数。
于是a和b的公约数就是b和r的公约数,那么a和b最大公约数就是b和r的最大公约数,(a,b)=(b,r)。
定理得证。
欧几里德算法就是对照这个定理来做的,每一次辗转相除其实就是用了一次上面的定理,一步一步递推得到最后结果。