1、平均数:一组数据,用这组数据的总和除以总分数,得出的数就是这组数据的平均数。平均数的大小与一组数据里的每个数据都有关系,任何一个数据的变动都会引起平均数的变动,即平均数受较大数和较小数的影响。
2. 中位数:将一组数据按大小依次排列,把处在最中间位置的一个数(或最中间位置的两个数的平均数)叫做这组数据的中位数。中位数的大小仅与数据的排列位置有关。因此中位数不受偏大和偏小数的影响,当一组数据中的个别数据变动较大时,常用它来描述这组数据的集中趋势。
3. 众数:在一组数据中出现次数最多的数据叫做这组数据的众数。因此求一组数据的众数既不需要计算,也不需要排序,而只要数出出现次数较多的数据的频率就行了。众数与概率有密切的关系。众数的大小仅与一组数据中的部分数据有关。当一组数据中有不少数据多次重复出现时,它的众数也往往是我们关心的一种集中趋势。
从这三个数的意义可知,这三个统计量都是表示一组数据的集中趋势情况,由于每个数表示的意义不同,因此,一般情况下一组数据的平均数、中位数、众数也往往不同.那如何使用这三个统计量呢,我认为这个没有明确的规定,要根据研究对象的具体情况,看哪个统计量最能反映这组数据的一般水平就用哪个。
一、联系与区别:
1、平均数是通过计算得到的,因此它会因每一个数据的变化而变化。
2、中位数是通过排序得到的,它不受最大、最小两个极端数值的影响.中位数在一定程度上综合了平均数和中位数的优点,具有比较好的代表性。部分数据的变动对中位数没有影响,当一组数据中的个别数据变动较大时,常用它来描述这组数据的集中趋势。另外,因中位数在一组数据的数值排序中处中间的位置,
3、众数也是数据的一种代表数,反映了一组数据的集中程度.日常生活中诸如“最佳”、“最受欢迎”、“最满意”等,都与众数有关系,它反映了一种最普遍的倾向.
二、平均数、中位数和众数它们都有各自的的优缺点.
平均数:(1)需要全组所有数据来计算;
(2)易受数据中极端数值的影响.
中位数:(1)仅需把数据按顺序排列后即可确定;
(2)不易受数据中极端数值的影响.
众数:(1)通过计数得到;
(2)不易受数据中极端数值的影响
平均数:数学平均值;中位数:二分之一的那个值;众数:大多数。
简单地说
平均数就是各数之和除以个数得的均值
中位数是指由小到大排列,位置在最中间那个数(两个数时求均值)
众数是指一组数中出现次数最多那个数(出现频次最多,可以是1个或几个)