如何复数方法推导sin3α=4sinα·sin(π⼀3+α)sin(π⼀3-α),我试不出来

2024-12-31 15:55:13
推荐回答(1个)
回答1:

sin3α=[e^(i3α)-e^(-i3α)]/(2i)={[e^(iα)]^3-[e^(-iα)]^3}/(2i)=[e^(iα)-e^(-iα)][e^(i2α)+e^(-i2α)+1]/(2i)=[2isinα][2cos(2α)+1]/(2i)=sinα{2[1-2(sinα)^2]+1}=sinα[3-4(sinα)^2]=4sinα[(√3/2)^2-(sinα)^2]=4sinα[(sinπ/3)^2-(sinα)^2],即sin3α=4sinα[sin(π/3)-sinα][sin(π/3)+sinα]=4sinα[2cos(π/6+α/2)sin(π/6-α/2)][2sin(π/6+α/2)cos(π/6-α/2)]=4sinα[2sin(π/6+α/2)cos(π/6+α/2)][2sin(π/6-α/2)cos(π/6-α/2)],即sin3α=4sinαsin(π/3+α)sin(π/3-α)。