f(x)=-1⼀3x^3+1⼀2x^2+2ax 在2⼀3 到正无穷上存在单调增区间 求a范围 主要是想法

2024-12-18 17:48:39
推荐回答(2个)
回答1:

存在单调增区间
即f'(x)>0有解
-x²+x+2a>0有解
二次函数开口向下
对称轴x=1/2
所以x>2/3递减
所以必须x=2/3
-x²+x+2a>0
a>-1/9

回答2:

首先肯定这题是要求导滴!
其次令f‘(x)≥0
最后分离a,写出表达为a≥?,或a≤?
因为(2/3,+无穷)单调增
所以看情况若a≥?求出?的最大值,大于?的最大值即可
若a≤?求出?的最小值,大于?的最小值即可
一般都是这样做的!