1. 有 28位小朋友排成一行 .从左边开始数第 10位是爱华,从右边开始数他是第几位?
2. 纽约时间是香港时间减 13小时 .你与一位在纽约的朋友约定,纽约时间 4月 1日晚上 8时与他通电话,那么在香港你应几月几日几时给他打电话?
3. 名工人 5小时加工零件 90件,要在 10小时完成 540个零件的加工,需要工人多少人?
4. 大于 100的整数中,被 13除后商与余数相同的数有多少个?
5. 四个房间,每个房间里不少于 2人,任何三个房间里的人数不少 8人,这四个房间至少有多少人?
6. 在 1998的约数(或因数)中有两位数,其中最大的是哪个数?
7. 英文测验,小明前三次平均分是 88分,要想平均分达到 90分,他第四次最少要得几分?
8. 一个月最多有 5个星期日,在一年的 12个月中,有 5个星期日的月份最多有几个月?
9. 将 0, 1, 2, 3, 4, 5, 6, 7, 8, 9这十个数字中,选出六个填在下面方框中,使算式成立,一个方框填一个数字,各个方框数字不相同 .
□ +□□ =□□□
问算式中的三位数最大是什么数?
10. 有一个号码是六位数,前四位是 2857,后两位记不清,即
2857□□
但是我记得,它能被 11和 13整除,请你算出后两位数 .
11. 某学校有学生 518人,如果男生增加 4%,女生减少 3人,总人数就增加 8人,那么原来男生比女生多几人?
12. 陈敏要购物三次,为了使每次都不产生 10元以下的找赎, 5元、 2元、 1元的硬币最少总共要带几个?
(硬币只有 5元、 2元、 1元三种 .)
13. 右图是三个半圆构成的图形,其中小圆直径为 8,中圆直径为 12,
14.幼儿园的老师把一些画片分给 A, B, C三个班,每人都能分到 6张 .如果只分给 B班,每人能得 15张,如果只分给 C班,每人能得 14张,问只分给 A班,每人能得几张?
15. 两人做一种游戏:轮流报数,报出的数只能是 1, 2, 3, 4, 5, 6, 7, 8.把两人报出的数连加起来,谁报数后,加起来的数是 123,谁就获胜,让你先报,就一定会赢,那么你第一个数报几?
16.一本小说的页码,在印刷时必须用1989个铅字,在这一本书的页码中数字1出现多少次?
17.把23个数:3,33,333,…,33…3(23个3)相加,则所得的和的末四位数是多少?
18.将1、1、2、2、3、3、4、4这八个数字排成一个八位数,使得两个1之间有一个数字,两个2之间有二个数字,两个3之间有三个数字,两个4之间有四个数字,那么这样的八位数中最小的是?
19.从 1, 2, 3,…,2004, 2005这些自然数中,最多可以取几个数,才能使其中每两个数的差不等于4?
20.有一个电话号码是六位数,其中左边三个数字相同,右边三个数字是三个连续的自然数,六个数字之和恰好等于末尾的两位数,这个电话号码是多少?
21.若a为自然数,证明10│(a2005-a1949).
22.给出12个彼此不同的两位数,证明:由它们中一定可以选出两个数,它们的差是两个相同数字组成的两位数.
23.求被3除余2,被5除余3,被7除余5的最小三位数.
24.设2n+1是质数,证明:12,22,…,n2被2n+1除所得的余数各不相同.
25.试证不小于5的质数的平方与1的差必能被24整除.
26. 有甲乙两种糖水,甲含糖270克,含水30克,乙含糖400克,含水100克,现要得到浓度是82.5%的糖水100克,问每种应取多少克?
27. 一个容器里装有10升纯酒精,倒出1升后,用水加满,再倒出1升,用水加满,再倒出1升,用水加满,这时容器内的酒精溶液的浓度是?
28. 有若干千克4%的盐水,蒸发了一些水分后变成了10%的盐水,在加300克4%的盐水,混合后变成6.4%的盐水,问最初的盐水是多少千克?
29.已知盐水若干克,第一次加入一定量的水后,盐水浓度变为3%,第二次加入同样多的水后,盐水浓度变为2%。求第三次加入同样多的水后盐水的浓度。
30.有A、B、C三种盐水,按A与B的数量之比为2:1混合,得到浓度为13%的盐水;按A与B的数量之比为1:2混合,得到浓度为14%的盐水;按A、B、C的数量之比为1:1:3混合,得到浓度为10.2%的盐水,问盐水C的浓度是多少?
www.aoshu.cn
四年级奥数题
1、某校有100名学生参加数学竞赛,平均分是63分,其中男生平均分是60分,女生平均分是70分,男同学比女同学多( )人。
2、有黑白棋子一堆,其中黑子的个数是白子个数的2倍,如果从这堆棋子中每次同时取出黑子4个,白子3个,那么取出( )次后,白子余1个,而黑子余18个。
3、学校买回4个篮球和5个排球一共用185元,一个篮球比一个排球贵8元,篮球的单价是( )元。
4、小强爱好集邮,他用1元钱买了4分和8分的两种邮票,共20张,那么他买了4分邮票( )张。
5、松鼠妈妈采松子,晴天每天采20个,雨天每天可采12个,它一连采了112个,平均每天采14个,这几天中有( )天是雨天。
6、一些2分与5分的硬币共299分,其中2分的个数是5分个数的4倍,5分的有( )个。
7、某人领得工资240元,有2元、5元、10元三种人民币共50张,其中2元和5元的张数一样多,那么10元的有( )张。
8、买一些4分、8分、1角的邮票共15张,用币100分,最多可买1角的( )张。
9、买一些4分与8分的邮票共花6元8角,已知8分的邮票比4分的多40张,那么8分的邮票有( )张。
10、鸡兔共200只,鸡的脚比兔的脚少56只,则鸡有( )只,兔有( )只?
11、有一辆货车运输2000只玻璃瓶,运费按到达时完好瓶子数目计算,每只2角,如有破损,破损1个瓶子还要倒赔1元,结果得到运费379.6元,问这次搬运中玻璃损坏了( )只。
12、某次数学测验共20题,做对一题得5分,做错一题倒扣1分,不做得0分,小华得了76分,问他做对( )题。
13、甲乙两人射击,若命中,甲得4分,乙得5分;若不中,甲失2分,乙失3分,每人各射10发,共命中14发,结算分数时,甲比乙多10分,问甲中( )发,乙中( )发。
14、鸡兔同笼,共有头100个,足316只,那么鸡有( )只,兔有( )只。
15、小明花了4元钱买贺年卡和明信片,共14张,贺年卡每张3角5分,明信片每张2角5分,他买了( )张贺年卡,( )张明信片。
16、东湖小学六年级举行数学竞赛,共20道试题,做对一题得5分,没有做一题或做错一题倒扣3分,刘刚得了60分,则他做对了( )题。
17、鸡兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只,则鸡( )只,兔( )只。
18、100个馒头100个和尚吃,大和尚每人吃3个,小和尚3人吃一个,则大和尚有( )个,小和尚有( )个。
19、30枚硬币,由2分和5分组成,共值9角9分,2分硬币有( )个,5分有( )个。
20、有钢笔和铅笔27盒,共计300支,钢笔每盒10支,铅笔每盒12支,则钢笔有( )盒,铅笔有( )盒。
21、鸡兔同笼,共有足248只,兔比鸡少52只,那么免有( )只,鸡有( )只。
22、工人运青瓷花瓶250个,规定完整运一个到目的地给运费20元,损坏一个倒赔100元,运完这批花瓶后,工人共得4400元,则损坏了( )只。
22、有2角、5角和1元人民币20张,共计12元,则1元有( )张,5角有( )张,2角有( )张。
23、班主任张老师带五年级(2)50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵。问( )名男生,( )名女生。
24、大油瓶一瓶装4千克,小油瓶2瓶装1千克,现有100千克油装了共60个瓶子。问大瓶子有( )个,小瓶子有( )个。
25、小毛参加数学竞赛,共做20道题,得64分,已知做对一道得5分,不做得0分,错一题扣1分,又知道他做错的题和没做的一样多。问小毛做对( )道题。
26、有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,2对翅膀;蝉6条腿,1对翅膀)。三种动物各几只?
邮递员叔叔要给大楼第十三层的一个客户送邮件,不巧电梯停开。邮递员叔叔走楼梯从一层上到五层需要2分钟,那么他以同样的速度上到第十三层一共需要多长时1.有100个和尚,100个馒头,大和尚1人2个,小和尚2人1个,请问各有几个大和尚,几个小和尚??
初中奥数题?的答案:
讲方法,我不计答案,你自己计,设大和X人,小和y人,x+y=100。2x+1/2y=100,联立解即可
两个方程解得,x=100/3
y=200/3
因为不是整数,所以此题无解.
2.已知多项式x^3+bx^2+cx+d的系数为整数,且bd+cd为奇数,求证:此多项式不能分解为2个整系数多项式的乘积。反设此多项式能分解为2个整系数多项式的乘积
(x^2+Ax+B)(x+C)=x^3+bx^2+cx+d
x^3+(A+C)x^2+(B+AC)x+BC=x^3+bx^2+cx+d
则A+C=b
B+AC=c
BC=d
因为bd+cd为奇数d*(b+c)为奇数,且已知多项式x^3+bx^2+cx+d的系数为整数
则d为奇数b+c为奇数
BC=d,B,C为奇数
B+AC=c,
1)A为偶数,则c为奇数则b为偶数
因为A+C=b
则A为奇数,矛盾
2)A为奇数,则c为偶数则b为奇数
因为A+C=b
则A为偶数,矛盾
综上:此多项式不能分解为2个整系数多项式的乘积间?从一楼到五楼共四层,需两分钟,那么从一楼到十三楼共十二层,需(12/4)*2=6分钟
一列火车长600米,它以每秒10米的速度穿过长200米的隧道,从车头进入隧道到车尾离开隧道共需多少时间?
(600+200)÷10=80(秒)
答:从车头进入隧道到车尾离开隧道共需80秒
在从1开始的自然数中,第100个不能被3除尽的数是多少?
解答:我们发现:1、2、3、4、5、6、7、……中,从1开始每三个数一组,每组前2个不能被3除尽,2个一组,100个就有100÷2=50组,每组3个数,共有50×3=150,那么第100个不能被3除尽的数就是150-1=149.