其一:平面上到定点的距离等于定长的点的集合叫圆。
其二:平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。
【有关圆的基本性质与定理】
⑴圆的确定:画一条线段,以线段长为半径以一端点为圆心画弧绕360度后得到圆。
圆的对称性质:圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
⑵有关圆周角和圆心角的性质和定理 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。 一条弧所对的圆周角等于它所对的圆心角的一半。 直径所对的圆周角是直角。90度的圆周角所对的弦是直径。 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。
⑶有关外接圆和内切圆的性质和定理
①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;
②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)
④两相切圆的连心线过切点(连心线:两个圆心相连的直线)
⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。
(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。
(5)圆心角的度数等于它所对的弧的度数。
(6)圆周角的度数等于它所对的弧的度数的一半。
(7)弦切角的度数等于它所夹的弧的度数的一半。
(8)圆内角的度数等于这个角所对的弧的度数之和的一半。
(9)圆外角的度数等于这个角所截两段弧的度数之差的一半。
【有关切线的性质和定理】
圆的切线垂直于过切点的半径;经过半径的一端,并且垂直于这条半径的直线,是这个圆的切线。
切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。
切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。
切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。
〖有关圆的计算公式〗
1.圆的周长C=2πr=πd 2.圆的面积S=πr�0�5; 3.扇形弧长l=nπr/180
4.扇形面积S=(nπr�0�5)/360=lr/2(l为扇形的弧长)5.圆锥侧面积S=πrl 6.圆锥侧面展开图(扇形)的圆心角n=360r/l(r是底面半径,l是母线长)
切割线定理 圆的一条切线与一条割线相交于p点,切线交圆于C点,割线交圆于A B两点 , 则有pC�0�5=pA�6�1pB
割线定理 与切割线定理相似 两条割线交于p点,割线m交圆于A1 B1两点,割线n交圆于A2 B2两点
则pA1�6�1pB1=pA2�6�1pB2
【圆的解析几何方程】
圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)�0�5+(y-b)�0�5=r�0�5。
圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x�0�5+y�0�5+Dx+Ey+F=0(其中D�0�5+E�0�5-4F>0)。其中和标准方程对比,其实D=-2a,E=-2b,F=a�0�5+b�0�5-r�0�5。该圆圆心坐标为(-D/2,-E/2),半径r=0.5√D�0�5+E�0�5-4F。
圆的参数方程:以点O(a,b)为圆心,以r为半径的圆的参数方程是 x=a+r*cosθ, y=b+r*sinθ, (其中θ为参数)
圆的端点式:若已知两点A(a1,b1),B(a2,b2),则以线段AB为直径的圆的方程为 (x-a1)(x-a2)+(y-b1)(y-b2)=0
圆的离心率e=0,在圆上任意一点的曲率半径都是r。
经过圆 x�0�5+y�0�5=r�0�5上一点M(a0,b0)的切线方程为 a0*x+b0*y=r�0�5
在圆(x�0�5+y�0�5=r�0�5)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为 a0*x+b0*y=r�0�5
【圆与直线的位置关系判断】
平面内,直线Ax+By+C=0与圆x�0�5+y�0�5+Dx+Ey+F=0的位置关系判断一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x�0�5+y�0�5+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。利用判别式b�0�5-4ac的符号可确定圆与直线的位置关系如下:
如果b�0�5-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b�0�5-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b�0�5-4ac<0,则圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x�0�5+y�0�5+Dx+Ey+F=0化为(x-a)�0�5+(y-b)�0�5=r�0�5。令y=b,求出此时的两个x值x1、x2,并且规定x1
当x1
在直角坐标系中,圆的解析式为:(x-a)�0�5+(y-b)�0�5=r�0�5
x�0�5+y�0�5+Dx+Ey+F=0
=> (x+D/2)�0�5+(y+E/2)�0�5=D�0�5/4+E�0�5/4-F
=> 圆心坐标为(-D/2,-E/2)
其实只要保证X方Y方前系数都是1
就可以直接判断出圆心坐标为(-D/2,-E/2)
这可以作为一个结论运用的
且r=根号(圆心坐标的平方和-F)