帮忙解答一下

2025-01-01 05:58:02
推荐回答(1个)
回答1:

4。设z=z(x,y)由方程x²+y²+z²=xyz确定,求dz
解:作函数F(x,y,z)=x²+y²+z²-xyz=0
先求偏导数:∂z/∂x=-(∂F/∂x)/(∂F/∂z)=-(2x-yz)/(2z-xy)=(yz-2x)/(2z-xy)
∂z/∂y=-(∂F/∂y)/(∂F/∂z)=-(2y-xz)/(2z-xy)=(xz-2y)/(2z-xy)
故dz=(∂z/∂x)dx+(∂z/∂y)dy=(yz-2x)/(2z-xy)dx+(xz-2y)/(2z-xy)dy=[1/(2z-xy)][(yz-2x)dx+(xz-2y)dy]
5。设z=cos(x²+y),则∂²z/∂x²=?
解:∂z/∂x=-2xsin(x²+y);故∂²z/∂x²=-2sin(x²+y)-4x²cos(x²+y)
三。解答题
1。设z=sin²(x+y),求所有二阶偏导数
解:∂z/∂x=2sin(x+y)cos(x+y)=sin[2(x+y)];∂z/∂y=2sin(x+y)cos(x+y)=sin[2(x+y)];
∂²z/∂x²=2cos[2(x+y)];∂²z/∂y²=2cos[2(x+y)];
∂²z/∂x∂y=∂²z/∂y∂x=-4sin[2(x+y)];

2。设函数f可微,z=f(ye^x,x/y²),求∂z/∂x,∂z/∂y.
解:设z=f(u,v);u=ye^x,v=x/y²;
那么∂z/∂x=(∂f/∂u)(∂u/∂x)+(∂f/∂v)(∂v/∂x)=(ye^x)(∂f/∂u)+(1/y²)(∂f/∂v);
∂z/∂y=(∂f/∂u)(∂u/∂y)+(∂f/∂v)(∂v/∂y)=(e^x)(∂f/∂y)-(2x/y³)(∂f/∂v);