已知0<A<π⼀2<B<π,cos(B-π⼀4)=1⼀3,sin(A+B)=4⼀5求cos(a+π⼀4)的值

2024-12-30 07:26:17
推荐回答(2个)
回答1:

A+¼π=A+B+¼π-B=(A+B)-(B-¼π).
cos(A+¼π)=cos{(A+B)-(B-¼π)}
= cos(A+B) cos(B-¼π) + sin(A+B) sin(B-¼π)
利用cos(B-π/4)=1/3,求出sin(B-π/4)=?
利用sin(A+B)=4/5,求出cos(A+B)=?
自己可以完成的。注意开方取正负号的依据是【知0

回答2:

由题可知,sin(B-π/4)=2根号2/3, cos(A+B)=-3/5.

cos(A+π/4)=cos{(A+B)-(B-π/4)}
=cos(A+B)cos(B-π/4)+sin(A+B)sin(B-π/4)
=(-3/5)*(1/3)+(4/5)*(2根号2/3)
=-3/15+8根号2/15
=(-3+8根号2)/15
不懂可以追问!