我们在计算(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1),发现直接运算很麻烦,

2024-12-28 08:47:00
推荐回答(4个)
回答1:

(3+1)(3²+1)(3^4+1)(3^8+1)(3^16+1);先乘以2,然后再除以2

=(3-1)(3+1)(3²+1)(3^4+1)(3^8+1)(3^16+1)/2

=(3^32-1)/2

=926510094425920

回答2:

解:
(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)
=(3-1)(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)/(3-1)
=(3^2-1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)/2
=(3^4-1)(3^4+1)(3^8+1)(3^16+1) /2
=(3^8-1)(3^8+1)(3^16+1)/2
=(3^16-1)(3^16+1)/2
=(3^32-1)/2

回答3:

我靠!在算式(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)前乘以(3-1)

回答4:

(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)

=[(3-1)(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)]/2
=(3^32-1)/2