已知函数f(x)=√3sinxcosx-cos눀x-cos눀+1⼀2(x∈R)

2024-12-28 11:54:55
推荐回答(1个)
回答1:

∵ cos2x=2cos²x-1
∴ cos²x=(cos2x+1)/2
∵ sin2x=2sinxcosx
∴ f(x)=√3sinxcosx-cos²x+1/2
=√3/2sin2x-1/2cos2x-1/2+1/2
=√3/2sin2x-1/2cos2x
=sin2xcosπ/6-sinπ/6cos2x
=sin(2x-π/6)
(1) 函数f(x)的最小正周期为:2π/2=π

(2) 单调增:2kπ-π/2<2x-π/6≤π/2+2kπ
2kπ-π/3<2x≤2π/3+2kπ
即 kπ-π/6 单调减:2kπ+π/2<2x-π/6≤3π/2+2kπ
2kπ+2π/3<2x≤5π/3+2kπ
即 kπ+π/3(3) f(x)在区间(0,π/3]的取值范围
f(x)∈(-1/2,1]