2(3+1)(3^2+1)(3^4+1)...(3^16+1)+1

2024-12-20 12:42:36
推荐回答(3个)
回答1:

2(3+1)(3^2+1)(3^4+1)...(3^16+1)+1

=(3-1)(3+1)(3^2+1)(3^4+1)...(3^16+1)+1
=(3^2-1)(3^2+1)(3^4+1)…(3^16+1)+1
=(3^4-1)(3^4+1)……(3^16+1)+1
……
=(3^16-1)(3^16+1)
=3^32-1+1
=3^32

回答2:

=(3-1)(3+1)(3^2+1)(3^4+1)...(3^16+1)+1
=3^32-1+1
=3^32

因为2=3-1 用平方差公式

回答3:

  2(3+1)(3^2+1)(3^4+1)...(3^16+1)+1
  =﹙3-1﹚(3+1)(3^2+1)(3^4+1)...(3^16+1)+1

  =3^32-1+1

  =3^32

  连续应用平方差公式。