计算:(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)+1= 要详细过程。谢谢

2024-12-29 22:00:05
推荐回答(2个)
回答1:

解:
(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)+1
=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)+1
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)+1
=(2^4-1)(2^4+1)(2^8+1)(2^16+1)+1
=(2^8-1)(2^8+1)(2^16+1)+1
=(2^16-1)(2^16+1)+1
=2^32-1+1
=2^32

回答2:

(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)+1
=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)÷(2-1)+1
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)÷(2-1)+1
=(2^4-1)(2^4+1)(2^8+1)(2^16+1)÷(2-1)+1
=(2^8-1)(2^8+1)(2^16+1)÷(2-1)+1
=(2^16-1)(2^16+1)÷(2-1)+1
=(2^32-1)+1
=2^32