一般两位数的平方,都可以用这样的方法来计算:用这个数加它的个位数再乘以它的十位数,将得数乘10,然后加个位数的平方即可。
就是所谓的“本数加其尾,乘头居首位,为求平方积,再加尾乘尾。”
个位为1、2、3的两位数的平方计算方法:
对于个位是1、2、3的两位数,可以用这个数加它的个位数再乘以它的十位数,最后在算出的得数后面添加个位数的平方即可。
例如: 求23的平方,将23加3得26,26再乘2得52,52后面添加3的平方9,即可得529,这就是23平方的得数。
再比如求52的平方,可将52加2得54,再乘以5得270,后面添加2的平方4,即可得2704。
个位是4、6、7、8的两位数。
这一组两位数的平方计算法和第一组两位数平方的计算法相似,不同之处是因为这一组两位数个位的平方均超过10,所以在最后添加个位数的平方时须把它的十位数进到末位那个数,再把它的个位数添列到后面。
例如: 求26的平方,26 6 得 32 ,32×2得 64,因为个位数6的平方是36 ,须将3进到末一位,所以,64 3得67 ,67后面添加6得676,这就是26的平方结果。
再比如求48的平方,48 8 得56 ,56×4得224,224 6 (64的十位数)得 230 ,230后面添加 4 (64的个位数),即得 2304 。
以上算法看似步骤多些,但都是极易心算的,熟练之后会觉得非常的简便快捷。
对于个位是 5 的两位数,当然也可以用上述方法心算,还有一种更简便的方法: 只须将十位数加1再乘十位数,后边再添加 25 即可得出结果。
例如求 45 的平方,用4 乘5 (4 1)得 20 ,20 后面添加 25 ,即可得出 2025 ,就是 45 的平方。
再如求 85 的平方,8×9 得 72,后面添加 25 ,即得 7225 。
此法还可用于一些易算的三位数的平方,如求 105 的平方,10×11得 110 ,那么 105 的平方就是 11025 了; 求205的平方,20×21得 420 ,那么 205 的平方就是 42025 了。
最后我们来看个位是9的两位数的平方心算法。
个位是9的两位数计算平方时,可用“这个数加1”的平方,减去“这个数加1”的2倍,再加1即可得出结果。
例如求 29 的平方,“ 29 1 ”的平方是 900 ,减去“ 29 1 ”的2倍60 ,得数是 840 ,再加1得 841 。
再比如求 59 的平方,60的平方是 3600 ,减去60的2倍得3480,最后加1即得 3481
可以将其中的两位数写成与另一个两位数相对应较为简单的数 + 剩余的数,便于口算
也可以看两数的特征,根据特征,灵活利用
例如
75 * 25=75*(20+5)=1500+375=1875
好像没有吧!基本上没什么规律的。但有一个除外。凡是个位数是5的数码暴龙它的平方相当好算。如果一个数是A5,它的平方一定可以分成两部分,首先前面那部分单独算,变成A加上1的和再乘以A,后面那部分直接是5^2。比如15*15一定等于225,即15的十位数乘以比它大1的数,个位数直接平方。这条规律只适用于个位数为5的数的平方运算。