利用因式分解求x(x+y)(x-y)-x(x+y)^2的值,其中x+y=1,xy=1⼀2. 跪求解题过程,完整一点

2025-01-01 06:32:11
推荐回答(5个)
回答1:

解∶x﹙x+y﹚﹙x-y﹚-x﹙x+y﹚²
=x﹙x+y﹚﹙x-y﹚-x﹙x+y﹚﹙x+y﹚
=x﹙x+y﹚[﹙x-y﹚-﹙x+y﹚]
=x﹙x+y﹚﹙x-y-x-y﹚
=x﹙x+y﹚﹙﹣2y﹚
=﹙﹣2xy﹚﹙x+y﹚
=﹙﹣2﹚× ½× 1
=﹣1
欢迎追问,若满意望采纳O(∩_∩)O

回答2:

解:原式=x(x+y)【x-y-x-y】(提取公因式x(x+y))
=x(x+y)×(-2y)=-2xy(x+y)
代入x+y=1,xy=1/2得原式=-1
不懂,请追问,祝愉快O(∩_∩)O~

回答3:

x(x+y)(x-y)-x(x+y)^2
=x[(x+y)(x-y)][-(x+y)^2]
=x(x+y)[(x-y)-(x+y)]
=-2xy(x+y)
x+y=1,xy=1/2原式=-1*1
=-1
有什么不明白可以继续问,随时在线等。
如果我的回答对你有帮助,请及时选为满意答案,谢谢~~

回答4:

x(x+y)(x-y)-x(x+y)^2
=x(x+y)(x-y-x-y)
=x(x+y)(-2y)
=-2xy(x+y)
=-2*1/2*1
=-1

回答5:

x(x+y)(x-y)-x(x+y)²
=x(x+y)(x-y-x-y)
=-2xy(x+y)
=-2×1/2×1
=-1