已知f(x)=x^4+ax^3+x^2+bx+1有一个因式为x^2-2x+1,试求a,b的值并不是f(x)因式分解。

急啊!!拜托了是并把f(x)因式分解
2024-12-28 13:15:40
推荐回答(3个)
回答1:

已知f(x)=x⁴+ax³+x²+bx+1有一个因式为x²-2x+1
那么f(x)=x⁴+ax³+x²+bx+1=(x²-2x+1)(x²+kx+1)=x⁴+(k-2)x³+(2-2k)x²+(k-2)x+1
对比系数得a=k-2,1=2-2k,b=k-2
所以k=1/2,a=b=-3/2

所以f(x)=x⁴-3x³/2+x²-3x/2+1=(x²-2x+1)(x²+x/2+1)=(x-1)²(x²+x/2+1)

如果不懂,请追问,祝学习愉快!

回答2:

f(x)=x^4+ax^3+x^2+bx+1=(x^2-2x+1)(x^2+px+1)=(x^2+1)^2+(p-2)x(x^2+1)-2px^2
=x^4+(p-2)x^3+(2-2p)x^2+(p-2)x+1
对比系数得:
p-2=a
2-2p=1,得:p=1/2
p-2=b
得:a=b=-3/2
f(x)=(x-1)^2(x^2+x/2+1)

回答3:

a=-3/2;b=-3/2
f(x)=(x^2-2x+1)(x^2+(1/2)x+1)
=(x-1)^2(x^2+(1/2)x+1)